

CMPLAB

CMP 실험실

(Chemical Mechanical Planarization Lab)

Department of Mechanical Engineering Pusan National University

1st Ph.D. for CMP

연도		학교명	전공	학위		
1980.3	1987.2	부산대학교	생산기계공학	학사		
1987.3	1989.2	한국과학기술원	생산공학	석사		
1991.10	1994.9	일본동경대학교	정밀공학	박사		
논문주제		입자가공에 의한 디바이스의 평탄화에 관한 연구 A study on planarization of device wafer using abrasive processing				

연	도	기관명	직위		
1989	1990	한국과학기술연구원	연구원		
1990	1991	한국생산기술연구원	연구원		
1994	1995	일본 이화학연구소	박사 후 연구원		
1995	현재	부산대학교	교수		
1999	현재	지앤피테크놀로지(주)	대표이사		
2002	2003	UC Berkeley	방문 교수		
2002	2004	부산대학교	연구부처장		
2004	2013	부산대학교	부속공장장 겸 학교기업 경량부품가공센터장		
2004	2013	부산대학교	공과대학 부속공장장		
2013	2014	부산대학교	선도기업 인력양성 사업단(LINC) 부단장		
2015	2017	부산대학교	선도기업 인력양성 사업단(LINC) 단장		

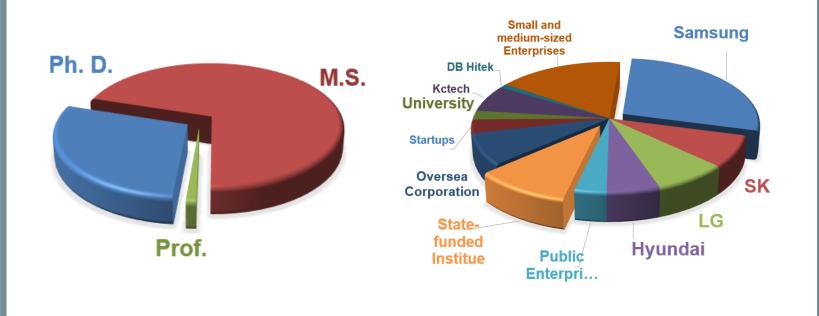
Prof. Haedo Jeong

Outputs (Career)

Publications

Research papers(370), **Conference** papers(470), **Books**(11), **Patents**(43)

Awards


연도	수상명	수상내용
2018	대통령 포장증	과학기술진흥을 통하여 국가발전에 크게 기여 (과학기 술포장)
2017	Most Cited Article Award,2015 to 2016	"Analysis of removal mechanism on oxide CMP us ing mixed abrasive slurry"
2017	대한기계학회 Outstanding Service Award	Recognition of many years of dedizated service to the mechanical engineering community as an Edi tor of the Journal of Mechanical Science and Tech nology
2017	부산대학교 논문상	국내외적으로 저명한 학술지에 다수의 논문을 발표하 여 공과대학의 위상을 높이는데 기여
2017	제27회 과학기술우수논문상	"Mechanical Aspects of the Chemical Mechanical Polishing Process:A Review"
2016	키슬러코리아기술상	"Effect of Non-Spherical Colloidal Silica Particles o n Removal Rate in Oxide CMP" 등 정밀측정 및 가공 분야에서 뛰어난 논문들을 발표하여 정밀공학 발전에 기여
2016	Highly Cited Research	Semi-empirical material removal rate distribution model for SiO2 chemical mechanical polishing(C MP) process
2013	한국정밀공학회 가헌학술상	국내외 학슬지 우수 논문 발표 및 정밀 가공 분야 학문 발전에 기여
2012	한국경밀공학회 IJPEM Highly Commended Paper A ward	IJPEM Highly Commended Paper Award
2011	부산대학교 우수강의상	우수강의자

Outputs (Alumni)

* Graduates career status: 1998 ~ 2021 (Total 90 people) Ph. D. (26), M.S. (64) Prof. (1)

CMPLAB

Members

Ph.D. Student

Seonho Jeong shjeong@pusan.ac.kr **Research Area** - CMP of advanced package - Planarization modeling

Master Student

Hogyeong Jo

Research Area

- SIC CMP

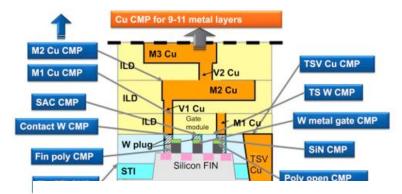
Hoseong Jo hsjo@pusan.ac.kr Research Area - Slurry supply system (spray nozzle)

Seongnyeong Heo snheo@pusan.ac.kr Research Area - slurry supply system (Ultrasonic waves)

Youngwook Park pyu0131@pusan.ac.kr **Research Area**

ghrud0425@pusan.ac.kr

Minji Kim minji97 @pusan.ac.kr Research Area - Planarization Modeling


Yeongil Shin oil5108@pusan.ac.kr Research Area

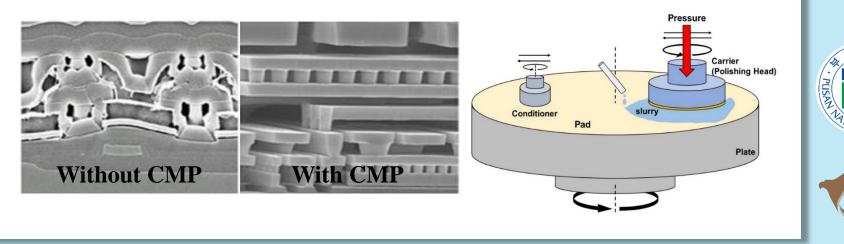
Research contents

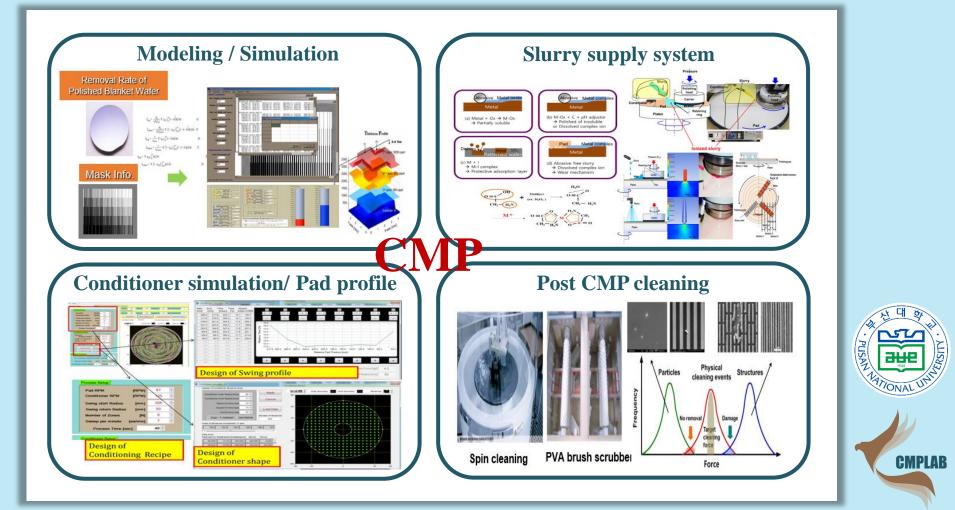
The number of CMP processes in advanced semiconductor manufacturing has also expanded up to 20–30 steps

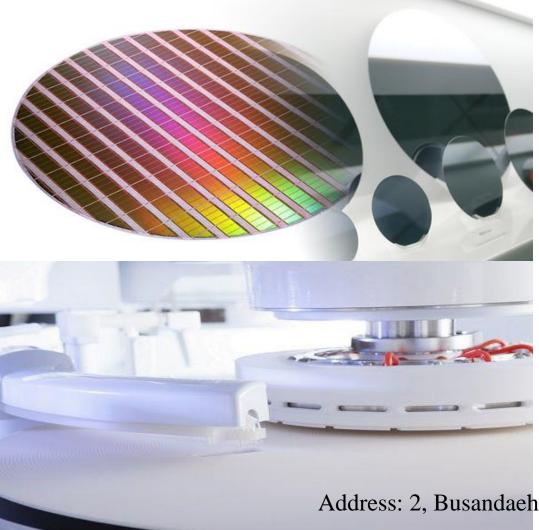
•	3Xnm	2Xnm	1Xmm	2X - 1Xnm Planar	3D 32-36L	3D 48-64L
Layer	10	14	17	10	14-26	17-32
1	STI	STI	STI	STI	STI	STI
2	ILD1	Ox Buff	Ox Buff	Ox Buff (X)	Ox Buff (X)	Ox Buff (X)
3	Poly	ILD1	ILD1	Poly	ILD1	ILD1
4	ILD2	Poly	Poly	ILD	ILD2	ILD2
5	Ox Buff (X)	ILD2	HM Buff (X)	w	HM Buff (X)	HM Buff (X)
6	ILD3	W (X)	ILD2	ILD	SoN (X)	SoN (X)
7	w	ILD3	W(X)	W (X)		Poly (X)
8	W via (X)	ILD4	ILD3	Cu	SoP (X)	SoP (X)
9	Cu	TIN	ILD4		ILD3	ILD3
10		W via (X)	TiN		W (X)	ILD4
11		Cu	W via (X)		w	HM (X)
12					W via (X)	W (X)
						W (X)
						W
15						W via (X)
		188				Cu (X)
	10 9 8 7 6 5 4 3 2 1 1 Layer	15 14 13 12 11 10 9 Cu 9 Cu 9 Cu 9 Cu 9 Cu 9 Cu 9 Cu 9 Cu 9 Cu 9 Cu 10 10 2 LD3 10 2 LD3 10 10 10 10 10 10 10 10 10 10	10 10 115 11 12 ILD 11 Cu 10 W via (X) 9 Cu 7 W LD3 W (X) 5 Ox Buff (X) 4 ILD2 2 ILD1 2 ILD1 LB1 STI 3 TO 1 STI 10 14	IS ILD 13 ILD Cu (X) 11 Cu (X) W via (X) 10 W via (X) TN 9 Cu TN ILD3 7 W L0.33 W (X) 5 Ox Buff (X) ILD3 4 ILD2 Poly 3 Poly ILD1 2 ILD1 Ox Buff (X) 1 STB STB Layer 10 14 17	10 10 15 15 14 ILD Cu (X) 11 Cu Wis (X) Th 10 Wis (X) Th 9 Cu Th ILD4 10 Wis (X) Th 9 Cu Th ILD4 8 Wvis (X) ILD4 ILD3 Cu 6 ILD3 W(X) W(X) ILD4 ILD3 UX) 5 Ox Buff (X) ILD4 ILD3 WX ILD ILD ILD4 ILD5 Paly ILD ILD4 ILD4 ILD4 ILD5 ILD4 ILD5 ILD4 ILD5	10 10 11 ILD Cu (X) 11 Cu (X) W via (X) 11 Cu (X) W 10 W via (X) W 10 W via (X) ILD 11 Cu (X) W 10 W via (X) ILD 11 Cu (X) W 12 ILD KD2 14 ILD3 W(X) W(X) 1 State HM Buff (X) HM Buff (X) 4 ILD2 Poly Poly ILD 2 ILD1 Ox Buff (X) Buff (X) Buff (X) 1 Still Still Still Still (X) Layer 10 14 17 10 14-26

Technology Node		Planar				FinFETs		GAA
		65nm	45nm	28nm	20nm	16/14/10nm	7nm	Snm
CMP	Layer	10	12	14	15	18-25	24-30	25-34
	1	STI	STI	STI	STI	STI1	STI1	5711
	2	ILD	ILD	ILD .	ILD	STI2	STI2	STI2
Nun	3	W	Al Gate	POP	POP	HM	HM	HM
	4	7-8 Cu	W	AI / W Gate	Al/W Gate	Gate Poly	SiGe	SiGe
	5		7-8 Cu	W	W-TS	ILDO	Gate Poly	III-V
	6		Contraction of the	9-10 Cu	W-Plugs	POP	ILDO	Gate Poly
ą	7				9-10 Cu (*)	HM	POP	ILD0
Number of CMP Process	8					W-Gate	HM	POP
	9					SAC	W Gate	HM
5	10					W-TS	SAC1	Co Gate
4P	11					W-Plugs	SAC2	SAC1
ě.	12					HM (2-4)	W-TS	SAC2
ŏ	13					8-12 Cu (*)	W Plugs	HM
es	14						HM (2-6)	Co-TS
un .	15						Co IM (0-2)	W-TS
	16						10-13 Cu (*)	W Plugs
	17							HM (4-12)
	18	1.18						Co IM (3)
	19			Advance				10-11 Cu

Research contents


CMP : Chemical Mechanical Planarization


- ◆ Polishing unit : 10nm ~ 10Å
- To reduce surface roughness for additional wor.
 - \rightarrow Life time \uparrow Friction \downarrow


Technology for ...

- Next-generation semiconductor device
- Silicon/compound semiconductor substrates
- Ultra-precise surface processing technology for display/lens
- Micro mechanical/electronic structures using smart materials

CMPLAB

Contact Information

E-mail : <u>hdjeong@pusan.ac.kr</u> Tel. : 051-510-2463 (Office) 051-510-3210 (Lab.) Lab : Room 726, Mechanical Eng. Bldg. Address: 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan