Reactor Physics & Particle Transport Computation Simulation Lab.

원자로 물리 및 입자 수송 전산 시뮬레이션 연구실

2024.03.21.(Thu.)

Nuclear System Division, School of Mech. Eng. Pusan National University, Pusan, Republic of Korea

1. 지도 교수

□ 이현철 교수님 (Hyun Chul Lee)

- ◆ 경력
 - 2016.09 ~ 현재 : 부산대학교 기계공학부 원자력시스템전공 부교수
 - 2013. 03 ~ 2016. 08 : 한국 원자력 연구원(KAERI) 책임 연구원
 - 2004. 02 ~ 2013. 02 : 한국 원자력 연구원(KAERI) 선임 연구원
 - 2002. 09 ~ 2004. 01 : 미국 Purdue 대학교 연구과학자
 - 2001. 09 ~ 2002. 08 : 한국 원자력 연구원(KAERI) 박사 후 연구원

◆ 연구분야

- 원자로 물리 해석 및 전산 시뮬레이션 코드 개발
- 원자로 노심 핵설계 및 핵연료 임계해석
- 방사선 및 입자 수송 전산 해석 등
- ◆ 강의 개설현황
 - 컴퓨터 프로그래밍, 선형 대수학, 수치 해석, 원자로이론 등
- ✤ 연락처
 - Tel: 051-510-2318 / E-mail: <u>hyunchul.lee@pusan.ac.kr</u>
 - 교수 연구실 : 통합 기계관 908호
 - 대학원생 연구실 : 통합기계관 919호

2. 연구실 소개

□ 원자로물리 및 입자수송 전산 시뮬레이션 연구실

◆ 구성원

- 지도교수:이현철
- 박사과정 1명, 석박사통합과정 1명, 석사과정 1명, 학부연구생 1명

◆ 연구분야

- 원자로 노심 핵설계 및 관련 기술 분야
- 방사선 및 입자 수송 전산 해석
- 원자로 물리 해석 및 전산 시뮬레이션 코드 개발 등

◆ 수행 과제

과제 제목	발주처	연구 기간
고온가스로 노심 설계용 코드의 검증 및 개선	원자력연구원	2016.10-2018.03 (1.5년)
고체노심을 갖는 소형 모듈형 경수로 개념 개발	연구재단	2017.06-2020.05 (3.0년)
고연소도 핵연료 수송/보관 용기 안전성 평가시스템 개발	한수원	2018.05-2019.12 (1.7년)
흑연감속로의 플루토늄 생산량 추정을 위한 흑연동위원소비율법 개발	연구재단	2019.09-2024.02 (4.5년)
원전 다물리 전산해석 통합 플랫폼을 이용한 원전 다물리 해석	서울대	2021.06-2022.02 (2.6년)
원자력 안전 기업 현장 맞춤형 인력 양성	연구재단	2022.04-2024.12 (1.7년)

2. 연구실 구성원

- □ 졸업생
- ♦ 이*철
- 한수원
 중앙연구원
- 혁신형 SMR
 연구소 근무

- � 장*경
- 한국전력공사
- 해외원전 수출 사업부 근무

- ✤ 강*구
- 에이피엔

- ✤ 강*욱
 - 액트㈜

- � 장*빈
 - USNC Korea

- ✤ 한*석
 - RCARO
 - 원자력협력
 사업부 근무

2. 연구실 구성원

□ 대학원생

- ✤ 평**용
 - 박사과정

- � 정*진
 - 석박통합과정

- � 박*명
 - 석사과정

□ 학부연구생

- � 이*록
 - 학부연구생

3. 연구 분야

1. 원자로 노심 핵설계

✤ 사고저항성 핵연료를 이용한 경수로 노심 설계
- FeCrAl 피복재를 이용한 경수로 노심 설계

- 2. 원자로 물리 해석 및 전산 시뮬레이션 코드 개발
- 기계학습 및 장전모형 최적화
- 사용후 핵연료 운반 및 보관 최적화 코드 개발

- ✤ 원자로 개념 개발
 - 고체 노심 소형 모듈형 원자로(SMR) 개념 연구
 - 소듐냉각고속로(SFR) 개발 연구
 - 우주형 원자로
- **3. 응용분야** (방사선및입자수송전산해석)
- ✤ BNCT 암치료 응용을 위한 중성자 수송해석
- ◆ 북핵 검증을 위한 흑연 동위원소 비율법 개발

```
n(n, t, n) €
= 8;
```

입자 수송 시뮬레이션

tr(n) return s.cali(t, s, n); for (n ∈ 1.langth, n = n ? d > n ? hath.max(d, n + n) : n : 8; n ≥ 6; nee) if (n in t Mit(n] === a) return n

3. 연구 분야 - 개요

Simulation Codes • Deterministic Code: 간소화한 노심의 물리적 방정식을 풀어 노심의 반응을 계산.

- ST/RK, nTRACER
- Monte Carlo Code: 중성자를 노심 내에 무작위로 배치하여 통계적으로 노심의 반응을 모사.
 - MCNP, McCARD, MCS

3. 연구 분야 - 소형 모듈형 원자로 개념 개발

□ 고체 노심 소형 모듈형 원자로(SMR) 개념 연구

- ✤ 노심을 SiC 고체롤 구성
 - 냉각재 상실 사고시 전도에 의한 붕괴열 냉각
- ✤ 30MWth 출력으로 30년 운전

3. 연구 분야 - MSR 원자로 개념 개발

□ on-line refueling TRISO-fueled and Salt-Cooled Reactor (TFSCR)

- Structure of TFSCR
- Fuel material: UO₂
- Fuel form: TRISO particle
- Moderator: Graphite
- Reflector: Graphite
- Coolant: Salt
- Fuel lattice: hexagonal
- Core symmetry:1/12 rotational symmetry
- Fuel loading pattern:
 - Multiple fuel channels present in each region
 - TRISO fuel particles dispersed in molten salt c oolant and packed in fuel channels
 - Fuel channels connected end-to-end to form cl osed loop
 - TRISO particles move slowly within channels

3. 연구 분야 - MSR 원자로 개념 개발

□ on-line refueling TRISO-fueled and Salt-Cooled Reactor (TFSCR)

- Advantages of TFSCR
- TRISO 구조는 핵 연료의 유출을 방지할 수 있습니다.
- TRISO는 용융 염에 용해되지 않아, 연료 후처리에 유리합니다.
- 고온에서도 안정적인 운전을 유지할 수 있어 열 이용 효율을 높일 수 있습니다.
- 저압 상태에서도 운전이 가능하여 원자로 용기의 파손을 방지할 수 있습니다.

Outer Pyrolytic Carbon 27µm Silicon Carbide 60µm Inner Pyrolytic Carbon 35µm Proous Carbon Buffer 120µm Fuel Kernel UO₃

- Control reactivity
- 원자로의 reactivity는 refueling rate를 조정하여 안정적인 범위 내에서 제어할 수 있습니다.

म प श 3. 연구 분야 - 사고저항성 핵연료를 이용한 노심 설계

후쿠시마 원전사고 이후 사고저항성연료 (ATF-Accident Tolerant Fuels) 관심 증가.
 사고저항성연료 중 하나인 FeCrAl 핵연료 피복재를 적용한 노심 핵설계

3. 연구 분야 - 사고저항성 핵연료를 이용한 노심 설계

Fig. 1주기 집합체 모형

□ CNN을 이용한 핵설계 인자 예측

□ ViT을 이용한 핵설계 인자 예측

ViT

주요 핵설계 인자 판단 위치

3. 연구 분야 - 기계학습 및 장전모형 최적화

Fig. 최적 장전 모형

Fig. SA 최적화 흐름도

3. 연구 분야 - 사용후핵연료 운반 및 보관

Fig. 18년 4사분기 사용후핵연료 저장량 현황

Fig. 운반/보관 용기 운반 차량

Fig. 고리 1호기 원자력 발전소

Fig. 사용후핵연료 운반/보관 용기

3. 연구 분야 - 사용후핵연료 운반 및 보관

Integrated Analysis of Transportation Cask (SURECask)

Fig. 사용후핵연료 운반/보관 용기 종합 평가시스템 개발 개요

3. 연구 분야 - 사용후핵연료 운반 및 보관

 2단계: 경험에 의한 장전 규칙(Empirical model)
 * 반응도와 열 해석 측면에서 안전 마진이 크도록 장전 규칙 사전에 선정.
 운반/보관 용기 안전요소 성능평가
 * 안전요소: 반응도, 용기 표면 온도 및 선량, 그리고 용기 내 핵연료 피복관 최고 온도.

□ 핵연료의 최적 장전 배치도 → 실제 핵연료 장전에 참조.

- □ BNCT (Boron Neutron Capture Therapy) 란? 암환자에게 붕소(Boron,10B) 물질을 주입
 - → 암세포가 붕소를 섭취하여 함유
 - → 이 상태에서 가속기를 활용하여 암 세포에 중성자를 조사
- → 핵분열이 발생
- → 고 에너지의 2차 입자(Li, α 입자)들에 의하여 세포핵의 DNA를 효율적으로 파괴함으로써 암세포를 사멸시키는 새로운 치료법

□ BNCT(Boron Neutron Capture Therapy)란?

- ◆ 북한은 영변에 위치한 흑연 감속 원자로에서 핵무기를 생산하기 위해 플루토늄 을 만들고 있음.
- ◆ 흑연 동위원소 비율법은 북한 비핵화 시 북한이 원자로 운전에 대한 정보를 제 공하지 않아도 생산된 플루토늄 양을 추정할 수 있는 기술임.

0.E+00

1.E-02

2.E-02

Cumulative Pu [g/cm3]

3.E-02

4.E-02

5.E-02

3. 연구 분야 - 북핵 검증을 위한 흑연 동위원소 비율법 🛗

3. 연구 분야 - 북핵 검증을 위한 흑연 동위원소 비율법 🛗

- ◆ 흑연 동위원소 비율법 개발을 위해 국내 연구용 원자로 하나로 연소 실험 모사
- ◆ 결과의 불확실도에 영향을 미치는 요소를 분석하고 요소별 불확실도를 분석함

3. 연구 분야 - 북핵 검증을 위한 흑연 동위원소 비율법 🛗

✤ 통계학적 오차에 의한 불확실도 분석

3. 연구 분야 - 방사선 차폐 검증

□ SINBAD Benchmark를 이용한 시뮬레이션 계산 정확성 검증

- > SINBAD Benchmark 란?
 SINBAD Shielding Integral Benchmark Archive and Database.
 A new release of the radiation shielding experiments database (SINBAD) was issued in 2012.
 - Reactor Shielding 47
 - Fusion Neutronics Shielding 31
 - Accelerator Shielding 23

3. 연구 분야 - 방사선 차폐 검증

- □ SINBAD Benchmark를 이용한 시뮬레이션 계산 정확성 검증
 - Example-Skyshine experiment

Actual reactor model

Simulated reactor model

3. 연구 분야 - 방사선 차폐 검증

- □ SINBAD Benchmark를 이용한 시뮬레이션 계산 정확성 검증
 - Example-Skyshine experiment

Distance from the Reactor Axis,[m]

Differential Neutron Spectra at 100m from the RA Reactor, $\Phi(E)$, [1/(cm²·s·MeV)].

서버 클러스터

Name	Uranium	
No. of node	34	
CPU	E5-2660 V4 (28core)	
CPU	Xeon Gold 6230R (52core)	
Memory per core (GB)	6~8	

Reactor Physics and Particle Transport Computer Simulation Laboratory

Thank you

